Short Communication

Soil mycoflora in tomato fields

Omar A. Abdul Wahid, A. F. Moustafa and M. E. Ibrahim

Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt

Accepted for publication 29 April 1997

Density and species richness of fungal communities in soils of *Fusarium* infested and non-infested tomato-growing localities were studied by comparison of rhizoplanes, rhizospheres, and root-free soils. The rhizosphere soils harbored the highest counts of fungi, followed by root-free soil and rhizoplanes in both localities. Species richness was high in the rhizosphere and root-free soil but distinctly low in the rhizoplane. The population density of the rhizosphere and the rhizoplane showed a significant difference between infested and non-infested localities.

Key Words—Fusarium; soil mycoflora; tomato field.

Since the proposition of the term "rhizosphere" as a compartment of the root environment (Hiltner, 1904), voluminous studies have been carried out dealing with different aspects of rhizosphere microorganisms (Rovira, 1965a; El-Abyad et al., 1982; Richards, 1987; Harris, 1988; Lynch and Wood, 1988; Lynch, 1990; Barber, 1995; Tate, 1995). The quantitative and qualitative composition of these organisms are greatly affected by root exudates as well as soil type (Rovira, 1965 b; Parkinson, 1967; Youssef et al., 1975; Richards, 1987; Harris, 1988). It is well known that these exudates vary with plant age (Rovira, 1956; Vancura and Hovadik, 1965). On the other hand, rhizosphere microorganisms have some effects on plant growth (Rovira, 1965a; Youssef and Mankarios, 1974; Lynch and Wood, 1988; Hoflich et al., 1994). Though some studies have referred to considerable variations in the rhizospheres of resistant and susceptible varieties (Subba-Rao, 1977), none of the previous studies have dealt with the rhizospheric microorganisms of healthy and diseased roots of the same variety.

Tomato wilt induced by Fusarium oxysporum f.sp. Iycopersici is a very serious disease of wide distribution in Egyptian soils. The main objective of the present investigation is to contrast the mycoflora of the root environment of healthy and diseased tomato plants in non-infested and infested soils, respectively.

Soil properties in the Governorate of Ismailia vary considerably from one locality to another. Soils of the region consist of arid and semi-arid desert soils, some of which are cultivated, with textures ranging from sandy and sandy loam in reclaimed localities to sandy clay in old cultivated sites. The pH of such soils is slightly alkaline, fluctuating between 7 and 8, and the salinity ranges from 0.5 to 7 mmhos.

A total of 150 random soil and root samples were collected from both naturally infested and non-infested

tomato growing localities for screening the mycoflora of rhizospheres, rhizoplanes and root-free soils. Samples thereafter were transferred to the laboratory in steriletight polyethylene bags and stored at 5°C until microbiological analyses were performed.

Dilution plating (as described by Johnson et al., 1959) and serial washing techniques (Harley and Waid, 1955) were adopted as isolation procedures. Czapek's yeast extract agar medium (CYA) amended with a combination of rose bengal (67 mg/L) and chloramphenical (50 mg/L) was used for isolation. For each sample six replica plates were prepared and incubated at 28°C for 10 d, then developing colonies were identified and counted as colony forming units (cfu) per gram (dry soil or dry root). Pure cultures of isolated fungi were grown on standard media for proper identification: Ascomycetes on oatmeal agar (OA); mucoraceous fungi on malt extract agar (MEA) and potato dextrose agar (PDA); Hyphomycetes on PDA and potato carrot agar (PCA); Aspergillus and Penicillium on MEA and CYA. For species identification the following references have been consulted: Aspergillus (Raper and Fennell, 1965); Penicillium (Raper and Thom, 1949; Pitt, 1979); Chaetomium (Arx et al., 1986); Fusarium (Booth, 1971); dematiaceous Hyphomycetes (Ellis, 1971, 1976); general taxonomy (Domsch et al., 1980).

The genera Aspergillus and Penicillium were the richest amongst all the genera of class Hyphomycetes with 12 species each (Table 1). These were followed by Fusarium (5 spp.). Other genera of Hyphomycetes were represented by 3 or fewer species. Ascomycetes followed with 18 species, contributing 19% of total fungi isolated. Chaetomium came first among all genera of this class, being represented by 5 species. Other genera of Ascomycetes were represented by 2 or 1 species. Zygomycetes were represented by 8 species, accounting for only 8% of total fungi isolated. The other two class-

Table 1. Percentage frequency of species isolated from the three microhabitats in *Fusarium*-infested and non-infested tomato fields.

No.	Organisms	Root-free soil		Rhizosphere		Rhizoplane	
		H ^{a)}	Ja)	Н	ı	Н	ı
1	Absidia corymbifera	8	16	4	8	_	_
2	A. glauca	8	8	_	_	_	
3	Acremonium strictum	12	20	_	_	_	
4	A. terricola	4	4	24	24		_
5	Actinomucor elegans	4	4	_	12	_	_
6	Alternaria alternata	24	36	52	40	24	16
7	Arachniotus dankaliensis	12	12	8	12	_	_
8	Ascotricha chartarum	8	_	_	_	_	_
9	Aspergillus aegyptiacus	24	24		_	_	
10	A. carneus		_	_	8		_
11	A. clavatus		_	_	4	_	_
12	A. flavus	60	56	56	90	20	24
13	A. niger	92	92	88	84	52	36
14	A. ochraceus	52	56	44	32	4	4
15	A. sydowii	40	32	36	36		_
16	A. terreus	96	88	84	76	20	12
17	A. terricola	_		4	_	_	
18	A. ustus	8	8	4	8	_	
19	A. versicolor	40	48	20	16		
20	A. wentii	32	32	12	16		_
21	Bartalina robillardoides	4	4		10	_	
22	Botryotrichum piluliferum	44	40		1.6		
23		44		20	16	12	4
23 24	Botrytis cinerea		8	_	_	_	
24 25	Byssochlamys nivea	24	20	8	8	8	_
	Cephaliophora irregularis	_	4	4	_		
26	Chaetomium bostrychodes	8	4	20	8	_	_
27	C. globosum	_	_	16	12	_	_
28	C. gracile	16	8	20	12	4	_
29	C. madrasense	_	_	20	20	_	_
30	C. nigricolor	8	8	12	8		_
31	Chrysosporium tropicum	_	_	16	4	_	_
32	C. xerophilum	8	4	_			
33	Circinella muscae	4	4	_	_	_	_
34	Cladosporium cladosporioides	22	20	12	24	4	4
35	C. herbarum	16	24		_	_	
36	Curvularia oryzae	4	4	16	4	_	
37	C. tuberculata	24	12	16	12	_	
38	Drechslera holmii		_	8	8		_
39	D. rostrata	8	8		_	4	4
40	D. spicifera	12	8			_	
41	Emericella nidulans	88	80	88	56	16	12
42	Emericellopsis salmosynnemata	_	4	_	_	_	
43	Epicoccum purpurascens	4	4	4	4	_	
44	Eurotium chevalieri	_	_	24	12		_
45	E. rubrum	32	24		_	_	_
46	Fusarium concolor	_	_	4	_	24	24
47	F. dimerum	24	8	8	_	_	_
48	F. equiseti	_	8	_		_	
49	F. oxysporum ^{b)}	64	72	56	80	80	96
50	F. solani	52	48	36	28	60	52

51	Geotrichum candidum	4	4	8	8		_	
52	Gliocladium roseum	_	_		_	8	4	
53	Gliocladium sp.	20	12	_		_		
54	Graphium sp.	8	_	8	4	_	_	
55	Humicola fuscoatra	20	24	16	24	_	_	
56	H. grisea	8	8	_			_	
57	Macrophomina sp.		_	_	_	8	8	
58	Melanospora sp.	_	_	_	_		4	
59	Microascus cinereus			14	12	_	_	
60	M. trigonosporus	20	22			_		
61	Mucor circinelloides	16	24	12	28	20	40	
62	M. racemosus	8	4	4	16		_	
63	Myrothecium roridum	28	12			_		
64	M. verrucaria	28	28	20	20	_		
65	Neocosmospora vasinfecta	_		4	_	_	_	
66	Nigrospora oryzae	_	_	4			_	
67	Paecilomyces lilacinus	28	32	28	16	_	_	
68	P. variotii	12	12	12	4		_	
69	Papulaspora sp.	_	_	_	_	_	4	
70	Penicillium brevicompactum	4	12	_	4	4	8	
71	P. canescens	40	32	20	24	_	_	
72	P. chrysogenum	8	8	16	8		_	
73	P. citrinum	12	8	_	_	12	16	
74	P. cyclopium	8	8	8	4		_	
75	P. funiculosum	8	12	24	20		_	
76	P. oxalicum	16	12	12	8		_	
77	P. purpurogenum	32	28	_	_		_	
78	P. roquefortii		4	_	_			
79	P. rubrum	20	28	36	8		_	
80	P. rugulosum	12	8	8	4	_	_	
81	P. variabile		_	12	12	4	4	
82	Phoma leveillei	4	4	_	_	8	4	
83	Rhizoctonia solani	_	4	_	12	40	20	
84	Rhizopus stolonifer	52	48	44	56	56	52	
85	Scopulariopsis brevicaulis	52	52	24	28		_	
86	S. candida	_	_	8	4		_	
87	S. hanii	28	24	16	28		_	
88	Sporormiella minimoides	8	_	_	_			
89	Stachybotrys chartarum	24	20	12	4		_	
90	Syncephalastrum racemosum	_	_	8	8		_	
91	Talaromyces flavus	8	4	_		_	_	
92	Tilletiopsis sp.		_	12	8		_	
93	Trichoderma harzianum	32	24	28	24	20	12	
94	T. koningii	20	28	16	8	_	. —	
95	Trichosporon beigelii	4	4	12	4	_	_	
96	Ulocladium oudemansii	16	4	8	8	_	_	
97	Verticillium sp.	12	4	8	4			
Total number of species		71	74	64	63	24	24	
. otadiribor or opodica		7	77		69		26	

a) H: Non-infested; I: Infested.

b) Including pathogenic and non-pathogenic isolates.

es, Agonomycetes and Coelomycetes, were poorly represented.

Species frequency (%) was calculated as the number of cases of isolation out of 25 samples (Table 1) for each microhabitat. Four classes of species frequency were recognized: a high occurrence class, consisting of species showing frequencies of more than 50%, e.g., Aspergillus flavus, A. niger, Emericella nidulans, and F. oxysporum; a moderate occurrence class, including species showing frequencies ranging between 49 and 25%; a low occurrence class, containing species showing frequencies ranging between 24% and 12%; and a rare occurrence class, including species showing frequencies of less than 12%, e.g., Absidia glauca, Aspergillus ustus, Drechslera rostrata, and Penicillium brevicompactum. It was observed that fungi of high occurrence were almost the same in both root-free soil and rhizospheres. Some species (13 spp.) were common in all three microhabitats, of which F. oxysporum, F. solani and Rhizopus stolonifer were of high occurrence rank. Other species were restricted to a specific microhabitat. Egyptian soils tend to be slightly alkaline and the annual average temperature is relatively high. Both factors are quite favorable for Fusarium (Jones et al., 1982; Agrios, 1988) and this may account for its high frequency.

Collectively, root-free soils revealed 78 species, rhizospheres 68 species, and rhizoplanes 26 species. The limited number of species recovered from the rhizoplane indicates its selective effect on the occurrence of certain fungi on the root surface. The genera Fusarium, Aspergillus, Mucor, Trichoderma, Penicillium, and Gliocladium have been reported before as rhizoplane fungi (Subba-Rao, 1977). When the mean spectrum of species hosted by each one of the three microhabitats is considered (Table 2), it was evident that root-free soil accommodates the widest spectrum of species (ca. 16 spp.), while the rhizoplane showed the narrowest spectrum (5 spp.). Statistical analysis showed no difference

between non-infested and infested status of the three microhabitats. But significant differences were found between root-free soil versus both rhizosphere and rhizoplane as well as between rhizosphere versus rhizoplane.

Comparison of mean cfu's for the three different microhabitats (Table 2) revealed marked difference in colony counts. Rhizosphere soils showed the highest counts while rhizoplane samples had the lowest counts. Root-free soil showed intermediate counts. It was noticed that the R:S ratio (mean count of fungi in the rhizosphere to that of root-free soil) was 7.0 for the non-infested habitat and 8.5 for the infested one. The increasing number of fungal populations in the rhizosphere is attributed to the carbon compounds released from living roots into the surrounding soils (Subba-Rao, 1977; White, 1989). The concentration of these exudates increases and the number of fungal propagules becomes greater closer to the root surface. The slight increase in fungal populations of the Fusariuminfested compared with non-infested localities might be attributed to the contribution from the death of plant roots, which provide an additional food source for the growth of saprophytic fungi (White, 1989).

Comparison of data of the three microenvironments in both non-infested and infested localities (Table 2) revealed that there was no difference in species composition of fungal flora between non-infested and infested localities. At the same time, the total number of species recorded from each locality was approximately the same. There was no correlation between number of species recorded and population density in either locality. While the species number and richness tend almost to be alike in non-infested and infested localities, the count of fungi varied between them slightly (significant at P=0.01). The absence of a significant difference in quantitative and qualitative composition of fungal populations from root-free soil in both non-infested and infested habitats

Parameter	Non-infested	Infested	Mean	t. Value			
Species richness ^{a)}							
Root-free soil	16.6	15.9	16.3	0.52			
Rhizosphere	13.4	12.8	13.1	0.52			
Rizoplane	5.3	4.8	5.1	0.8			
Total number of species							
Root-free soil	71	74	_	_			
Rhizosphere	64	63	_	_			
Rizoplane	24	24	_	_			
Population density ^{b)}							
Root-free soil	6.3×10^2	7.3×10^2	6.8×10^2	0.92			
Rhizosphere	4.5×10^{3}	6.2×10^{3}	5.3×10^3	51.4c)			
Rizoplane	1.1×10^{2}	1.3×10^{2}	1.2×10^{2}	2.1c)			

Table 2. Comparison between the three microhabitats of non-infested and infested soils.

a) Expressed as number of species recovered from each habitat. Mean of twenty five samples.

b) Expressed as total cfu/g. Mean of twenty five samples.

c) Significant at P=0.01.

has previously been reported (Abdul Wahid, 1990). The difference between non-infested and infested habitats in both the rhizosphere and the rhizoplane might be due to the introduction of extra nutritional elements in the soils resulting from the lysis of the diseased roots and sloughed off cells and tissues (White, 1989).

Literature cited

- Abdul Wahid, O. A. 1990. Fungal flora of cultivated soils and their role in the biological control of tomato *Fusarium* wilt in Ismailia Governorate. Ph D thesis, Faculty of Science, Suez Canal University, Ismailia, Egypt.
- Agrios, G. N. 1988. Plant pathology, 3rd ed.. Academic Press, San Diego.
- Arx, J. A. von, Guarro, J. and Figueras, M. J. 1986. The ascomycete genus *Chaetomium*. J. Cramer, Berlin.
- Barber, S. A. 1995. Soil nutrient bioavailability, a mechanistic approach, 2nd ed. John Wiley & Sons, West Sussex.
- Booth, C. 1971. The genus *Fusarium*. Commonwealth Mycological Institute, Kew, Surrey.
- Domsch, K. H., Gams, W. and Anderson, T.-H. 1980. Compendium of soil fungi. Academic Press, London.
- El-Abyad, M. S., Ismail, I. K. and Rizk, M. A. 1982. Ecological studies on the rhizosphere of some Egyptian halophytic plants. Egypt. J. Bot. 25: 91–98.
- Ellis, E. B. 1971. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey.
- Ellis, E. B. 1976. More Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey.
- Harley, J. L. and Waid, J. S. 1955. A method of studying active mycelia on living roots and other surfaces in the soil. Trans. Br. Mycol. Soc. 30: 104–118.
- Harris, P. J. 1988. Ecology of the soil population. In: Russell's soil conditions and plant growth, 7th ed., (ed. by Wild, A.), pp. 472–499. Longman, Essex.
- Hiltner, L. 1904. Über nevere Erfahrungen und Probleme auf dem Gebiet der Boden Bakteriologie und unter besonderer Beurchsichtigung der Grundungung und Broche. Arbeit. Deut. Landw. Ges. Berlin 98: 59–78.
- Hoflich, G., Wiehe, W. and Kuhn, G. 1994. Plant growth stimulation by inoculation with symbiotic and association rhizosphere microorganisms. Experientia 50: 897–905.
- Johnson, L. F., Curl, E. A., Bond, J. H. and Fribourg, H. A. 1959. Method for studying soil microflora-plant disease relationship. Burgess Publ., Minneapolis.

- Jones, J. P., Jones, J. B. and Scott, J. W. 1982. Fusarium wilt of tomato. Bradenton AREC research report BRA 1982–13, University of Florida, USA.
- Lynch, J.M. 1990. The rhizosphere. John Wiley & Sons, West Sussex.
- Lynch, J. M. and Wood, M. 1988. Interaction between plant root and microorganisms. In: Russell's soil conditions and plant growth, 7th ed., (ed. by Wild, A.), pp. 526–563. Longman, Essex.
- Parkinson, D. 1967. Soil micro-organisms and plant roots. In: Soil biology, (ed. by Burges, A. and Raw, F.), pp. 449–478. Academic Press, New York.
- Pitt, J. I. 1979. The genus *Penicillium* and its teleomorphic states *Eupenicillium* and *Talaromyces*. Academic Press, London.
- Raper, K. B. and Fennell, D. I. 1965. The genus *Aspergillus*. Williams and Wilkins, Baltimore.
- Raper, K.B. and Thom, C. 1949. A manual of Penicillia. Williams and Wilkins, Baltimore.
- Richards, B.N. 1987. The microbiology of terrestrial ecosystems. Longman, Essex.
- Rovira, A. D. 1956. A study of the developments of the root surface microflora during the initial stages of plant growth. J. Appl. Bacteriol. 19: 72–79.
- Rovira, A. D. 1965a. Interaction between plant roots and soil microorganisms. Ann. Rev. Microbiol. 19: 241–266.
- Rovira, A. D. 1965b. Plant root exudates and their influence upon soil microorganisms. In: Ecology of soil-borne plant pathogens, (ed. by Baker, K. F. and Snyder, W. C.), pp. 170–184. University of California Press, Berkely.
- Subba-Rao, N.S. 1977. Soil microorganisms and plant growth. Oxford & IBH Publ., New Delhi.
- Tate III, R. L. 1995. Soil microbiology. John Wiley & Sons, West Sussex.
- Vancura, V. and Hovadik, A. 1965. Root exudates of plants: composition of root exudates of some vegetables. Plant and Soil 22: 21–25.
- White, R.E. 1989. Introduction to principles and practice of soil science. Blackwell Scientific Publ., Oxford.
- Youssef, Y. A. and Mankarios, A. T. 1974. Studies on the rhizosphere microflora of broad bean and cotton IV. The influence of rhizosphere fungi on plant growth. Mycopathol. Mycol. Appl. 54:173–178.
- Youssef, Y. A., Mankarios, A. T. and Shadi, M. R. 1975. Root exudates from *Phaseolus vulgaris* and their effect on spore germination and growth of *Fusarium solani* (Mart) Sacc. J. Ind. Bot. Soc. 65: 26–30.